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Abstract

A Dirichlet-to-Neumann (DtN) condition is derived for the numerical solution of time-harmonic multiple scattering

problems, where the scatterer consists of several disjoint components. It is obtained by combining contributions from

multiple purely outgoing wave fields. The DtN condition yields an exact non-reflecting boundary condition for the sit-

uation, where the computational domain and its exterior artificial boundary consist of several disjoint components.

Because each sub-scatterer can be enclosed by a separate artificial boundary, the computational effort is greatly reduced

and becomes independent of the relative distances between the different sub-domains. The DtN condition naturally fits

into a variational formulation of the boundary-value problem for use with the finite element method. Moreover, it

immediately yields as a by-product an exact formula for the far-field pattern of the scattered field. Numerical examples

show that the DtN condition for multiple scattering is as accurate as the well-known DtN condition for single scattering

problems [J. Comput. Phys. 82 (1989) 172; Numerical Methods for Problems in Infinite Domains, Elsevier, Amsterdam,

1992], while being more efficient due to the reduced size of the computational domain.
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1. Introduction

For the numerical solution of scattering problems in infinite domains, a well-known approach is to en-

close all obstacles, inhomogeneities and nonlinearities with an artificial boundary B. A boundary condition

is then imposed on B, which leads to a numerically solvable boundary-value problem in a finite domain X.
The boundary condition should be chosen such that the solution of the problem in X coincides with the

restriction to X of the solution in the original unbounded region.

If the scatterer consists of several obstacles, which are well separated from each other, the use of a single

artificial boundary to enclose the entire scattering region, becomes too expensive. Instead it is preferable to

enclose every sub-scatterer by a separate artificial boundary Bj. Then we seek an exact boundary condition

on B = ¨Bj, where each Bj surrounds a single computational sub-domain Xj. This boundary condition must

not only let outgoing waves leave Xj without spurious reflection from Bj, but also propagate the outgoing

wave from Xj to all other sub-domains X‘, which it may reenter subsequently. To derive such an exact
boundary condition, an analytic expression for the solution everywhere in the exterior region is needed.

Neither absorbing boundary conditions [1,2], nor perfectly matched layers [3–5] provide us with such a rep-

resentation. Instead we shall seek a Dirichlet-to-Neumann (DtN) boundary condition, which is based on a

Fourier series representation of the solution in the exterior region.

Exact DtN conditions have been derived for various equations and geometries, but always in the situ-

ation of a single computational domain, where the scattered field is purely outgoing outside X [6–10]. In

a situation of multiple disjoint computational domains, however, waves are not purely outgoing outside

the computational domain X = ¨Xj, as they may bounce back and forth between domains. We shall show
how to overcome this difficulty and derive an exact DtN condition for multiple scattering. The derivation

presented below for the Helmholtz equation in two space dimensions readily extends to multiple scattering

problems in other geometries and also to different equations. Because this exact boundary condition allows

the size of the computational sub-domains, Xj, to be chosen independently of the relative distances between

them, the computational domain, X, can be chosen much smaller than that resulting from the use of a sin-

gle, large computational domain.

There is an extended literature on the solution of multiple scattering problems – see Martin [11] for an

introduction and overview. Due to the difficulties mentioned above, numerical methods used for multiple
scattering so far have mainly been based on integral representations [12,13], while in the single scattering

case many alternative methods, such as absorbing boundary conditions, perfectly matched layers, or the

DtN approach are known. To our knowledge, this work constitutes the first attempt to generalize the

well-known DtN approach to multiple scattering.

Some of the analytical techniques we shall use, have been known in the ‘‘classical’’ scattering liter-

ature for quite some time. For instance, in 1913 Záviška [14] considered multiple scattering from an

array of parallel circular cylinders. He derived an infinite linear system for the unknown Fourier coef-

ficients of the scattered field, which involve Fourier expansions of the purely outgoing wave fields about
individual cylindrical obstacles. This method can be generalized to cylinders with non-circular cross-

sections [15]. Another class of methods is based on single and double layer potentials, which involve

integration with the Green�s function over the artificial boundary. From this representation, systems

of integral equations can be derived for multiple scattering problems – see Twersky [16] and Burke

and Twersky [17] for an extensive overview of previous work until 1964, and [11] for more recent

references.

In Section 2, we derive the DtN and modified DtN map for two scatterers. We show that the solution to

the boundary value problem in X, with the DtN condition imposed on B, coincides with the restriction to X
of the solution in the unbounded region X1. The formulation is generalized to an arbitrary number of scat-

terers in Section 3. In Section 4, we state a variational formulation of the artificial boundary-value problem

for use with the finite element method. An explicit formula for the far-field pattern of the solution, based on
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the decomposition of the scattered field into multiple purely outgoing wave fields, is derived in Section 5.

Finally, in Section 6, we consider a finite difference implementation of the multiple-DtN method and dem-

onstrate its accuracy and convergence. We also compare the multiple-DtN approach to the well-known

(single-)DtN method and show that both the numerical solutions and the far-field patterns, obtained by

these two different methods, coincide.
2. Two scatterers

We consider acoustic wave scattering from two bounded disjoint scatterers in unbounded two-dimen-

sional space. Each scatterer may contain one or several obstacles, inhomogeneities, and nonlinearity. We

let C denote the piecewise smooth boundary of all obstacles and impose on C a Dirichlet-type boundary

condition, for simplicity. In X1, the region outside C, the scattered field u = u(r,h) then solves the exterior
boundary-value problem
Duþ k2u ¼ f in X1 � R2; ð1Þ

u ¼ g on C; ð2Þ

lim
r!1

ffiffi
r

p o

or
� ik

� �
u ¼ 0: ð3Þ
The wave number k and the source term f may vary in space, while f may be nonlinear. The Sommerfeld

radiation condition (3) ensures that the scattered field corresponds to a purely outgoing wave at infinity.

Next, we assume that both scatterers are well separated, that is we assume that we can surround them by

two non-intersecting circles B1,B2 centered at c1,c2 with radii R1,R2, respectively. In the unbounded region

D, outside the two circles, we assume that the wave number k > 0 is constant and that f vanishes. In D, the
scattered field u thus satisfies
Duþ k2u ¼ 0 in D; k > 0 constant; ð4Þ

lim
r!1

ffiffi
r

p o

or
� ik

� �
u ¼ 0: ð5Þ
We wish to compute the scattered field, u, in the computational domain X = X1nD, which consists of the
two disjoint components X1 and X2. A typical configuration with two obstacles is shown in Fig. 1. Here, the

computational domain X is internally bounded by C = C1[C2, and externally by B = oD, which consists of

the two circles B1 and B2.

To solve the scattering problem (1)–(3) inside X, a boundary condition is needed at the exterior artificial

boundary B. This boundary condition must ensure that the solution in X, with that boundary condition

imposed on B, coincides with the restriction of the solution in the original unbounded region X1.

2.1. Derivation of the DtN map

On B we shall now derive a DtN map, which establishes an exact relation between the values of u and its

normal derivative. In contrast to the case of a single circular artificial boundary, as considered for example

by Givoli [7] and Grote and Keller [8], we cannot simply expand u outside B in a Fourier series. First, there

is no separable coordinate system outside B for the Helmholtz equation [18] and second, u is not purely

outgoing in D. Indeed, part of the scattered field leaving X1 will reenter X2, and vice versa. Hence the

boundary condition we seek on B must not only let outgoing waves leave X1 without spurious reflection



Fig. 1. A typical configuration with two obstacles bounded by C1 and C2 is shown. The computational domain X = X1[X2 is

externally bounded by the artificial boundary B = B1[B2. In each domain component Xj, we use a local polar coordinate system (rj,hj),
while (r,h) denotes the global polar coordinate system centered at the origin.
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from B1, but also propagate the outgoing wave field from X1 to X2, and vice versa, without any spurious

reflection.

We begin the derivation of an exact non-reflecting boundary condition on B = B1[B2 by introducing a

local polar coordinate system (rj,hj) outside each circle Bj, centered at cj (see Fig. 1). Next, we denote by D1

the unbounded domain outside B1 with r1 > R1, and by D2 the unbounded domain outside B2 with r2 > R2.

We now decompose the scattered field u in D into two purely outgoing wave fields u1 and u2, which solve the

following problems:
Du1 þ k2u1 ¼ 0 in D1; ð6Þ

lim
r!1

ffiffi
r

p o

or
� ik

� �
u1 ¼ 0 ð7Þ
and
Du2 þ k2u2 ¼ 0 in D2; ð8Þ

lim
r!1

ffiffi
r

p o

or
� ik

� �
u2 ¼ 0: ð9Þ
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Each wave field is influenced only by a single scatterer and completely obvious to the other. Therefore, u1
and u2 are entirely determined by their values on B1 or B2, respectively; they are given in local polar coor-

dinates (r1,h1), (r2,h2) by
ujðrj; hjÞ ¼
1

p

X10

n¼0

H ð1Þ
n ðkrjÞ

H ð1Þ
n ðkRjÞ

Z 2p

0

ujðRj; h
0Þ cos nðhj � h0Þdh0; rj PRj; ð10Þ
for j = 1,2. Here, the prime after the sum indicates that the term for n = 0 is multiplied by 1/2, while H ð1Þ
n

denotes the nth order Hankel function of the first kind. We now couple u1 and u2 with u by matching u1 + u2
with u on B = B1[B2:
u1 þ u2 ¼ u on B: ð11Þ

Both u and u1 + u2 solve the homogeneous Helmholtz equation (4) in D = D1\D2, together with the Som-
merfeld radiation condition (5) at infinity. Since u and u1 + u2 coincide on B, they coincide everywhere in

the exterior region D. We summarize this result in the following proposition. Moreover, before proceeding

with the derivation of the DtN map, we shall also prove that such a decomposition always exists and is

unique.

Proposition 1. Let u be the unique solution to the exterior Dirichlet problem (1)–(3) and assume that u satisfies

(4) and (5) in the exterior region, D. Then
u � u1 þ u2 in B [ D; ð12Þ

where u1 and u2 are solutions to the problems (6)–(9), respectively, together with the matching condition (11).

The decomposition of u into the two purely outgoing wave fields u1 and u2 is unique.

Proof. By the argument above, we have already shown that if u = u1 + u2 on B, and u1 and u2 solve (6)–(9),

then u ” u1 + u2 everywhere in D. We shall now show that u1 and u2 exist and, in fact, are unique.

Existence. In the exterior domain D, we use the Kirchhoff–Helmholtz formula [19] to write
uðxÞ ¼
Z
B

uðyÞ oUðx; yÞ
onðyÞ � ou

on
ðyÞUðx; yÞ

� �
dsðyÞ; x 2 D: ð13Þ
Here, U is the fundamental solution of the Helmholtz equation in two space dimensions,
Uðx; yÞ ¼ i

4
H ð1Þ

0 ðkjx� yjÞ; x 6¼ y; ð14Þ
while n denotes the outward normal from X on the artificial boundary B. Let
ujðxÞ :¼
Z
Bj

uðyÞ oUðx; yÞ
onðyÞ � ou

on
ðyÞUðx; yÞ

� �
dsðyÞ; x 2 Dj; ð15Þ
for j = 1,2. Then, a straightforward calculation shows that u1 satisfies (6) and (7) whereas u2 satisfies (8) and

(9). Clearly, u(x) = u1(x) + u2(x), "x 2 D = D1\D2. The expressions (13) and (15) can be continuously ex-

tended up to the artificial boundaries B and B1,B2, respectively [20, Theorem 2.13]. Thus, u1 and u2 also
satisfy the matching condition (11).

Uniqueness. Following a suggestion of S. Tordeux (INRIA, private communication, July 2003), we let

u ” v1 + v2 be another decomposition in B[D, where v1 and v2 solve (6)–(9), respectively. We shall now

show that v1 ” u1 and that v2 ” u2 throughout D. To do so, we let w1 :¼ u1 � v1 and w2 :¼ u2 � v2. Hence, w1

and w2 satisfy (6)–(9), respectively. Because w2 is regular throughout D2, it is also regular, and therefore

bounded, everywhere inside B1, including the local origin, c1. Thus, in the vicinity of B1, w1 and w2 can be

written in the local polar coordinates, (r1,h1), as
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w1ðr1; h1Þ ¼
X
n2Z

anH ð1Þ
n ðkr1Þeinh1 ; ð16Þ

w2ðr1; h1Þ ¼
X
n2Z

bnJnðkr1Þeinh1 ð17Þ
for r1 2 I :¼ [R1,R1 + e], with e = |c2 � c1| � (R1 + R2) > 0, because the scatterers are assumed to be well

separated. From the uniqueness of u we obtain w1 + w2 = u1 + u2�(v1 + v2) ” 0 in B [ D. Therefore
anH ð1Þ
n ðkr1Þ þ bnJnðkr1Þ ¼ 0 8n 2 Z; r1 2 I : ð18Þ
Since H ð1Þ
n and Jn are two linearly independent solutions of Bessel�s differential equation, we conclude that

an = bn = 0 for all n 2 Z. Thus, v1 ” u1 and v2 ” u2 in B[D. h

As a consequence of the proposition, we can now explicitly determine a DtN map for u by differentiating

u with respect to the outward normal n on B1 and B2 as follows:
onu ¼ M ½u1� þ T ½u2� on B1; ð19Þ

onu ¼ M ½u2� þ T ½u1� on B2; ð20Þ

u1 þ P ½u2� ¼ u on B1; ð21Þ

P ½u1� þ u2 ¼ u on B2: ð22Þ
Here the operator M corresponds to the standard single-DtN operator
M ½uj�ðhjÞ :¼
1

p

X10

n¼0

kH ð1Þ0
n ðkRjÞ

H ð1Þ
n ðkRjÞ

Z 2p

0

ujðRj; h
0Þ cos nðhj � h0Þdh0; ð23Þ
j = 1,2. The transfer operator T and propagation operator P are given by
T ½u1�ðh2Þ :¼
ou1
or2

ðR2; h2Þ; T ½u2�ðh1Þ :¼
ou2
or1

ðR1; h1Þ; ð24Þ

P ½u1�ðh2Þ :¼ u1ðR2; h2Þ; P ½u2�ðh1Þ :¼ u2ðR1; h1Þ: ð25Þ

The expressions on the right-hand sides of (19), (20) and on the left-hand sides of (21), (22) can be evaluated

explicitly by using the definitions (23)–(25) and the (exact) Fourier representation (10), valid in each local

coordinate system. These calculations involve some technical but straightforward coordinate transforma-
tions. For instance, in the particular situation shown in Fig. 1, T[u2] and P[u2] are explicitly given (in local

polar (r1,h1)-coordinates) on B1 for h1 2 [0, 2p) by
T ½u2�ðh1Þ ¼
1

r2
R1 þ 2d sin h1ð Þ 1

p

X10

n¼0

kH ð1Þ0
n ðkr2Þ

H ð1Þ
n ðkR2Þ

Z 2p

0

u2ðR2; h
0Þ cos nðh2 � h0Þdh0

"

þ 1

r2
2d cos h1

1

p

X10

n¼0

nH ð1Þ
n ðkr2Þ

H ð1Þ
n ðkR2Þ

Z 2p

0

u2ðR2; h
0Þ sin nðh2 � h0Þdh0

#
; ð26Þ

P ½u2�ðh1Þ ¼
1

p

X10

n¼0

H ð1Þ
n ðkr2Þ

H ð1Þ
n ðkR2Þ

Z 2p

0

u2ðR2; h
0Þ cos nðh2 � h0Þdh0; ð27Þ
where
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r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 þ 4dR1 sin h1 þ 4d2

q
; ð28Þ

sin h2 ¼
1

r2
R1 sin h1 þ 2dð Þ; ð29Þ

cos h2 ¼
1

r2
R1 cos h1: ð30Þ
The expressions for T[u1] and P[u1] on B2 are similar to (26)–(30), with r2 replaced by r1, h2 by h1, etc.
The matching condition (21), (22) cannot be inverted explicitly, and u1 and u2 thereby eliminated from

the DtN condition (19)–(22). Instead, we shall compute the values of u1 on B1 and u2 on B2, in addition to

the values of u. These auxiliary values are also useful during post-processing, as they yield explicit expres-

sions both for u everywhere outside X and for its far-field pattern – see Section 5.

With the DtN condition given by (19)–(22), we now state the boundary value problem for u inside the

computational domain X = X1 [ X2:
Duþ k2u ¼ f in X; ð31Þ

u ¼ g on C; ð32Þ

onu ¼ M ½u1� þ T ½u2� on B1; ð33Þ

onu ¼ M ½u2� þ T ½u1� on B2; ð34Þ

u1 þ P ½u2� ¼ u on B1; ð35Þ

P ½u1� þ u2 ¼ u on B2: ð36Þ

We now show that this boundary value problem has a unique solution, which coincides with the solution to

the original problem (1)–(3).

Theorem 2. Let u be the unique solution to the exterior Dirichlet problem (1)–(3) and assume that u satisfies

(4), (5) in the exterior region, D. Then the two scatterer boundary value problem (31)–(36) has a unique
solution in X, which coincides with the restriction of u to X.

Proof. Existence. We shall show that u|X is a solution to (31)–(36). Since u satisfies (1), (2) it trivially sat-

isfies (31), (32). To show that u|X satisfies the DtN condition (33)–(36) on B, we consider in B [ D the

unique decomposition u ” u1 + u2, provided by Proposition 1. Since u1 + u2 satisfies the DtN boundary con-

dition (33)–(36) on B, by construction, so does the restriction of u to X. Therefore, u|X is a solution to the

boundary value problem (31)–(36).

Uniqueness: We extend the argument of Harari and Hughes [21] for a single scatterer to the case of two
scatterers. Let v, together with v1|B1

and v2|B2
, denote another solution of (31)–(36). We shall show that

v ” u|X. First, we denote by
vjðrj; hjÞ :¼
1

p

X10

n¼0

H ð1Þ
n ðkrjÞ

H ð1Þ
n ðkRjÞ

Z 2p

0

vjðRj; h
0Þ cos nðhj � h0Þdh0; ð37Þ
the two purely outgoing wave fields, defined for rj P Rj, j = 1,2. Next, we construct an extension
v :¼
v in X;

v1 þ v2 in B [ D

�
ð38Þ
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of v into the exterior region D. We shall now show that w :¼ u� v vanishes in X. To begin, we remark that

w and its normal derivative are continuous everywhere in X1, while w satisfies Dw + k2w = 0 in X and w = 0

on C. By using integration by parts we now find that
Z
X
jrwj2 � k2jwj2 dx ¼

Z
B
w
ow
on

ds; ð39Þ
from which we infer that
Z
B
w
ow
on

� w
ow
on

ds ¼ 0: ð40Þ
Let Br denote the sphere of radius r > 0 centered at the origin. Again we use integration by parts, (40)
and the fact that w is a solution of (4) to obtain
0 ¼
Z

B
w
ow
on

� w
ow
on

ds ¼
Z
D
wDw� wDwdx� lim

r!1

Z
Br

w
ow
or

� w
ow
or

ds

¼ � lim
r!1

Z
Br

w
ow
or

� w
ow
or

ds: ð41Þ
From the radiation condition (5) and (41), we now infer that
0 ¼ lim
r!1

Z
Br

ffiffi
r

p o

or
� ik

� �
w

����
����
2

ds ¼ lim
r!1

r
Z
Br

ow
or

����
����
2

þ k2jwj2 � ik w
ow
or

� w
ow
or

� �
ds

¼ lim
r!1

r
Z
Br

ow
or

����
����
2

þ k2jwj2 ds: ð42Þ
Since k2 > 0 we conclude that
lim
r!1

Z
Br

jwj2 ds ¼ 0: ð43Þ
Eq. (43) then implies that w ” 0 in D, by Rellich�s theorem [19, Lemma 2.11]. By continuity, we also have

w = 0 on B. Finally, we apply Proposition 1 to w, which yields the unique decomposition w ” w1 + w2 with

w1 ” 0 and w2 ” 0 in B [ D. Because of the DtN condition (33)–(36) we conclude that onw = 0 on B. Since

the problem
Dwþ k2w ¼ 0 in X; ð44Þ

w ¼ 0 on C; ð45Þ

w ¼ 0 on B; ð46Þ

onw ¼ 0 on B ð47Þ

has only the trivial solution (which is verified directly by expanding the solution of (44) in a Fourier series

and by using the linear independence of the Hankel functions), w ” 0 in X or v ” u|X. h
2.2. The modified DtN map

In practice, the infinite sums which occur in the operators M, T, and P in the DtN condition (33)–(36)

have to be truncated at some finite N P 0. The corresponding truncated operators are denoted by MN, TN,

and PN. Even in the situation of a single scatterer, truncation can destroy the uniqueness of the solution in



638 M.J. Grote, C. Kirsch / Journal of Computational Physics 201 (2004) 630–650
X with the truncated DtN condition imposed at B. For single scattering, Harari and Hughes showed that

uniqueness is preserved if N is chosen large enough [21]. Alternatively, the modified DtN (MDtN) map

introduced in [8] can be used to overcome this difficulty. Its generalization to the case of two scatterers

is straightforward:
onu ¼ ikuþ ðM � ikÞN ½u1� þ ðT � ikP ÞN ½u2� on B1; ð48Þ

onu ¼ ikuþ ðM � ikÞN ½u2� þ ðT � ikP ÞN ½u1� on B2; ð49Þ

u1 þ PN ½u2� ¼ u on B1; ð50Þ

PN ½u1� þ u2 ¼ u on B2: ð51Þ

Numerical results with the MDtN map applied to multiple scattering are shown in Section 6.1.

They corroborate the expected improvement in accuracy and stability, well-known in the single scatterer

case.
3. Multiple scattering problems

The derivation of the DtN map presented above for two scatterers is easily generalized to the case of

several scatterers. We consider a situation with J scatterers, and surround each scatterer by a circle Bj of

radius Rj. Again we denote by B ¼
SJ

j¼1Bj the entire artificial boundary and by Dj the unbounded region

outside the jth circle. Hence the computational domain X ¼
SJ

j¼1Xj, where Xj denotes the finite computa-

tional region inside Bj, whereas D ¼
TJ

j¼1Dj denotes the unbounded exterior region.

In D, we now split the scattered field into J purely outgoing wave fields u1, . . .,uJ, which solve the
problems
Duj þ k2uj ¼ 0 in Dj; ð52Þ

lim
r!1

ffiffi
r

p o

or
� ik

� �
uj ¼ 0 ð53Þ
for j = 1, . . .,J. Thus uj is entirely determined by its values on Bj; it is given in local polar coordinates (rj,hj)
by (10). The matching condition is now given by
XJ

j¼1

uj ¼ u on B: ð54Þ
In analogy to Proposition 1, we can show that
u �
XJ

j¼1

uj in B [ D ð55Þ
and that this decomposition is unique. Therefore, we immediately find the DtN map for a multiple scatter-
ing problem with J scatterers:
onu ¼ M ½uj� þ
XJ

‘¼1
‘6¼j

T ½u‘� on Bj; ð56Þ
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uj þ
XJ

‘¼1
‘ 6¼j

P ½u‘� ¼ u on Bj; j ¼ 1; . . . ; J : ð57Þ
Here M, T and P operate on the purely outgoing wave fields uj as follows:
M : ujjBj
7! ouj

orj

����
Bj

; T : u‘jB‘
7! ou‘

orj

����
Bj

; P : u‘jB‘
7! u‘jBj

: ð58Þ
We note that no additional analytical derivations due to coordinate transformations, etc. are needed once the
situation of two scatterers has been resolved. Hence, the standard DtN operator M is given by (23), while

the operators T and P are again given by (26)–(30), with �1� replaced by �j� and �2� by �‘�, or vice versa.

In practice, the infinite series in the operators M, T and P need to be truncated at some finite value Nj,

which can be different for each sub-domain Xj. We denote the corresponding truncated operators by

MNj ; T Nj and PNj , j = 1, . . .,J. For simplicity of notation, we shall assume that all boundary operators

are truncated at the same value Nj = N, j = 1, . . .,J.
We now extend the modified DtN map (48)–(51) to the situation of J scatterers:
onu ¼ ikuþ ðM � ikÞN ½uj� þ
XJ

‘¼1
‘ 6¼j

ðT � ikPÞN ½u‘� on Bj; ð59Þ

uj þ
XJ

‘¼1
‘ 6¼j

PN ½u‘� ¼ u on Bj; ð60Þ
where N P 0 is the truncation index.

For J = 1, the expressions in (56), (57) and (59), (60) reduce to the well-known DtN and modified DtN

conditions for single scattering problems [6,8]. For J = 2, they correspond to the conditions derived previ-
ously in Section 2.

To further simplify the notation, we define the (symbolic) vectors
onujB ¼ or1ujB1
; or2ujB2

; . . . ; orJ ujBJ

� �T

; ð61Þ

ujB ¼ ujB1
; ujB2

; . . . ; ujBJ

� �T

; ð62Þ

uoutjB ¼ u1jB1
; u2jB2

; . . . ; uJ jBJ

� �T

ð63Þ
and the operator matrices
T ¼ T j
‘

	 
J

j;‘¼1
; T j

‘ : u‘jB‘
7!orju‘jBj

; ð64Þ

P ¼ P j
‘

	 
J

j;‘¼1
; P j

‘ : u‘jB‘
7!u‘jBj

ð65Þ
With these notations we rewrite the DtN map (56), (57) in matrix-vector notation as
onu ¼ Tuout on B; ð66Þ

Puout ¼ u on B; ð67Þ

and the modified DtN (MDtN) map (59), (60) as
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onu ¼ ikuþ T � ikPð ÞNuout on B; ð68Þ

PNuout ¼ u on B: ð69Þ
Remark. The derivation of the DtN (or MDtN) condition for multiple acoustic scattering can easily be
generalized to different equations (Maxwell�s equations [22], linear elasticity [10], etc), to other geometries

(ellipsoidal [8], wave-guide [23]), or to three space dimensions. In fact, our approach can be extended to all

multiple scattering problems, for which a DtN map is already known for single scattering.
4. Variational formulation

In the previous section, we have derived the DtN boundary condition (66), (67) for multiple scattering

problems. We shall now show how to combine it with two different numerical schemes used in the interior.

In this section, we present a variational formulation of a multiple scattering boundary value problem,

which is needed for the numerical solution with any finite element scheme. In Section 6, we shall show

how to combine the multiple-DtN boundary condition with a finite difference scheme. Numerical solutions
obtained with the finite difference scheme are then compared with a finite element solution using the DtN

method in a single larger domain.

We shall now show how to combine the multiple scattering DtN condition (66), (67) with the finite ele-

ment method in X. The computational domain X is bounded in part by B, the union of J disjoint circles,

and in part by some interior piecewise smooth boundary, C. For simplicity we consider a Dirichlet-type

condition on C, and assume that the acoustic medium inside X is also homogeneous and isotropic. Hence

the boundary value problem in X is:
�Du� k2u ¼ f in X; ð70Þ

u ¼ g on C; ð71Þ

onu ¼ Tuout on B; ð72Þ

Puout ¼ u on B: ð73Þ
Next, we introduce the function spaces
V ¼ fv 2 H 1ðXÞjvjC � gg; ð74Þ

V 0 ¼ fv 2 H 1ðXÞjvjC � 0g: ð75Þ

To derive a variational formulation of (70)–(73) we multiply (70) by a test function v 2 V0 and integrate

over X. Then we use integration by parts, together with (71)–(73), which yields the following variational

formulation for (70)–(73):

Find u 2 V such that
ðru;rvÞX � ðk2u; vÞX � ðTuout; vÞB ¼ ðf ; vÞX; ð76Þ

ðPuout; vÞB ¼ ðu; vÞB; ð77Þ

for all v 2 V0.
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Here, (Æ,Æ)X and (Æ,Æ)B denote the standard L2-inner products on X and B, respectively.

For the finite element discretization of (76), (77) we choose a triangulation Th of X, with mesh size h > 0

and nodes NðThÞ ¼ NX [NC [NB. Then we choose a subspace VN � V of finite dimension

N ¼ jNðThÞj ¼ NX þ NC þ NB, and nodal basis functions
Fig. 2.

domai
fUigNi¼1 � V N ; UiðxjÞ ¼ dij; xj 2 NðThÞ: ð78Þ

We denote by uhX the values of the finite element solution on NX, by uhB its values on NB and by uhout the
values of uout – see (63) – on NB, which yields from (76), (77) the following linear system of equations:
ð79Þ
Here I denotes the NB · NB identity matrix, while the other entries are given by
Kij ¼ ðrUj;rUiÞX � ðk2Uj;UiÞX; i; j : xi; xj 2 NX [NB; ð80Þ

T ij ¼ ðTUj;UiÞB; i; j : xi; xj 2 NB; ð81Þ

P ij ¼ ðPUj;UiÞB; i; j : xi; xj 2 NB; ð82Þ

fi ¼ ðf ;UiÞX �
X

j:xj2NC

gðxjÞKij; i : xi 2 NX [NB: ð83Þ
The sparsity pattern of the finite difference matrix for a two scatterer problem. There are 21 layers of 240 grid points in each

n X1 and X2. Hence the total number of unknowns is 2 · (21 · 240) for u plus 2 · 240 for u1|B1
and u2|B2

.
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Because the nodal basis functions fUjgNj¼1 are local, K is a sparse real ((NX + NB) · (NX + NB))-matrix.

The (NB · NB)-matrices T and P, however, have complex valued entries and are full, because the DtN

condition couples all unknowns on B. Clearly the structure of K, T, and P will depend both on the

number of sub-scatterers and on the finite element discretization used. For instance, for two sub-do-

mains each with an equidistant polar mesh with standard continuous Q1 finite elements, the sparsity
pattern of the resulting linear system will essentially look like that shown in Fig. 2, with eight instead

of four off-diagonal entries per row in K. Additional information on finite element analysis for acoustic

scattering can be found in [24].
5. Far-field evaluation

Once the scattered field u has been computed inside X, it is usually of interest to evaluate u also

outside X during a post-processing step, either at selected locations (‘‘receivers’’) or in a broader region.

If integral representations that involve integration over B with the Green�s function, such as (13), are

used, the evaluation of u outside X becomes rather cumbersome and expensive. However, if the mul-

tiple-DtN approach is used, the evaluation of u at some location x in D, the region outside X, is inex-
pensive and straightforward. Indeed, since the purely outgoing wave fields u1 and u2 are known on B1

and B2, respectively, they are known everywhere outside X via the Fourier representation (10). In fact,

we can rewrite (10) as
ujðrj; hjÞ ¼
1

p

X10

n¼0

H ð1Þ
n ðkrjÞ cosðnhjÞ

1

H ð1Þ
n ðkRjÞ

Z 2p

0

ujðRj; h
0Þ cosðnh0Þdh0

þ 1

p

X10

n¼0

H ð1Þ
n ðkrjÞ sinðnhjÞ

1

H ð1Þ
n ðkRjÞ

Z 2p

0

ujðRj; h
0Þ sinðnh0Þdh0; ð84Þ
where the two integrals correspond to the cosine and sine Fourier coefficients of ujjBj
; j ¼ 1; 2. Thus, to

compute u(x) = u1(x) + u2(x) at some x 2 D, it suffices to compute the Fourier coefficients of uj on Bj,

j = 1,2, yet only once. Then u1 and u2, and thereby u = u1 + u2, can be evaluated anywhere by summing
a few terms in the Fourier representation (84) of u1 and u2.

Yet another quantity which is often of interest is the far-field pattern of the scattered field u. The asymp-

totic behavior of any solution u to the exterior Dirichlet problem (1)–(3) is
uðr; hÞ � eikrffiffiffiffiffi
kr

p f ðhÞ; r ! 1: ð85Þ
The function f is called the far-field pattern of the solution. The value f(h) is the far-field response from the

scatterer in a direction h for a given incident wave. We shall now show how to directly compute f from the

values of u1jB1
and u2jB2

.Let cj ¼ ðcxj ; c
y
jÞ denote the center of Bj. The local coordinates (rj,hj), relative to cj, of

a point (r,h)2D given in (global) polar coordinates are
rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr cos h� cxjÞ

2 þ ðr sin h� cyjÞ
2

q
; ð86Þ

cos hj ¼
1

rj
ðr cos h� cxjÞ; sin hj ¼

1

rj
ðr sin h� cyjÞ: ð87Þ
By combining the contributions from the various purely outgoing wave fields uj|Bj
, j = 1, . . .,J, we can then

derive an explicit formula for the far-field pattern of u, given by (88) below. We summarize this result as a

theorem.
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Theorem 3. The far-field pattern f defined in (85) of the solution u to the exterior Dirichlet problem (1)–(3) is

entirely determined by the values of the purely outgoing wave fields uj, j = 1, . . ., J, on the components Bj of the

artificial boundary B, which appear in the DtN condition (56), (57). It is given by
f ðhÞ ¼ 1� i

p
ffiffiffi
p

p
XJ

j¼1

e�ikðcxj cos hþcyj sin hÞ
X10

n¼0

ð�iÞn

H ð1Þ
n ðkRjÞ

Z 2p

0

ujðRj; h
0Þ cos nðh� h0Þdh0: ð88Þ
Proof. We examine the asymptotic behavior of the Fourier representation (10) of each purely outgoing

wave field uj, j = 1, . . .,J, for r!1. By Taylor expansion of (86), (87) we observe that
rj ¼ r � ðcxj cos hþ cyj sin hÞ þOðr�1Þ; r ! 1; ð89Þ

cos hj ¼ cos hþOðr�1Þ; r ! 1; ð90Þ

sin hj ¼ sin hþOðr�1Þ; r ! 1: ð91Þ

Because the angle hj 2 [0,2p) is uniquely determined by the pair
ðcos hj; sin hjÞ ! ðcos h; sin hÞ; r ! 1; ð92Þ

we conclude that hj ! h, as r ! 1, and therefore that
cos nðhj � h0Þ � cos nðh� h0Þ; r ! 1; h0 2 ½0; 2pÞ: ð93Þ

The asymptotic behavior of the Hankel functions [25] is given by
H ð1Þ
n ðkrjÞ �

ffiffiffiffiffiffiffiffiffi
2

kprj

s
exp i krj �

1

2
np� 1

4
p

� �� �
¼ eikrjffiffiffiffiffiffi

krj
p 1� iffiffiffi

p
p ð�iÞn; r ! 1: ð94Þ
From (89) we conclude
ffiffiffiffiffiffi
krj

p
�

ffiffiffiffiffi
kr

p
and eikrj � eikre�ikðcxj cos hþcyj sin hÞ; r ! 1: ð95Þ
Each purely outgoing wave field uj, given by (10), therefore has the asymptotic behavior
ujðrj; hjÞ �
eikrffiffiffiffiffi
kr

p 1� i

p
ffiffiffi
p

p e�ikðcxj cos hþcyj sin hÞ
X10

n¼0

ð�iÞn

H ð1Þ
n ðkRjÞ

Z 2p

0

ujðRj; h
0Þ cos nðh� h0Þdh0; r ! 1: ð96Þ
Since u ¼
PJ

j¼1uj, the result follows by summing over j. h
6. Numerical examples

We shall now combine the multiple-DtN (66), (67) and -MDtN (68), (69) condition with a finite differ-

ence scheme. We shall also compare the scattered fields obtained either with the double-DtN approach or

with the single-DtN approach in a very large computational domain and demonstrate their high accuracy

and convergence properties via numerical examples.

We consider the following two scatterer model problem with two obstacles, where the computational

domain X = X1 [ X2, the obstacle boundary C = C1 [ C2, and the artificial boundary B = B1 [ B2:
Duþ k2u ¼ f in X; ð97Þ

u ¼ g on C; ð98Þ
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onu ¼ Tuout on B; ð99Þ

Puout ¼ u on B: ð100Þ

To precisely describe the typical structure of the resulting discrete linear system, we consider a polar equidis-

tant grid alongB1 andB2. InsideX1 andX2, we discretize the solution with step size hr in the r-direction and hh
in the h-direction. Then we use second order centered finite differences in r- and h-direction to discretize (97).

The vectors uð1ÞN and uð2ÞN denote the values of the numerical solution on the artificial boundary. The discreti-

zation of (97) involves the values uð1ÞNþ1 and u
ð2Þ
Nþ1 at ‘‘ghost’’ points, which lie outside the computational domain

X. These unknown values are eliminated by using a second order finite difference discretization of (99), (100).
Next, we let the vectors u1 and u2 denote the values of the purely outgoing wave fields on their respective

boundary components. Then the discretization of the multiple-DtN condition (99), (100) is given by
2

h2r
I 0 Qð1Þ 0 M ð1Þ T

ð1Þ
ð2Þ

0 2

h2r
I 0 Qð2Þ T

ð2Þ
ð1Þ M ð2Þ

0 0 �I 0 I P
ð1Þ
ð2Þ

0 0 0 �I P
ð2Þ
ð1Þ I

0
BBBBBB@

1
CCCCCCA

uð1ÞN�1

uð2ÞN�1

uð1ÞN

uð2ÞN

u1
u2

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

0

0

0

0

0
BBB@

1
CCCA; ð101Þ
with identity matrices I, all-zero matrices 0 and tridiagonal matrices Q. The matrices M, T and P are full
matrices obtained by discretizing the integral operators with the second order trapezoidal quadrature rule.

A typical sparsity pattern of the entire finite difference matrix, including the discretization of (97) in the

interior is shown in Fig. 2, for the special case of two circular obstacles with an equidistant polar mesh

throughout X1 and X2. Here the ordering of the interior and boundary nodes is chosen by starting from

the innermost ‘‘layers’’ in both domains and moving outward with increasing index. The 6 small full blocks

in the lower right corner correspond to the full block-matrices in (101). In all computations below, we have

used the sparse direct solver provided by Matlab. Further details about the efficient iterative solution of the

system of linear equations corresponding to a single-scattering DtN problem can be found in [26].

6.1. Accuracy and convergence study

To demonstrate the accuracy and convergence of our method, we consider the following test problem:

We let an incident plane wave impinge on a circular disk shaped obstacle centered at (0,�d), with radius 0.5
1

aximal relative errors for plane wave scattering from a single obstacle, with the values of the exact solution prescribed on the

ary of the second ‘‘obstacle’’

5 · 60 10 · 120 20 · 240 40 · 480

e error in the solution

7.53 · 10�2 1.77 · 10�2 4.38 · 10�3 1.09 · 10�3

7.85 · 10�2 1.84 · 10�2 4.54 · 10�3 1.13 · 10�3

9.77 · 10�2 2.24 · 10�2 5.49 · 10�3 1.37 · 10�3

e error in the far-field pattern

4.68 · 10�2 1.11 · 10�2 2.76 · 10�3 6.87 · 10�4

6.05 · 10�2 1.45 · 10�2 3.60 · 10�3 8.97 · 10�4

7.69 · 10�2 1.85 · 10�2 4.57 · 10�3 1.14 · 10�3

nce angle a, wave number k = 2p, DtN expansion truncated at N = 50, comparison with exact solution. Grids with Nr · Nh cells

nd h-direction, respectively.
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and distance d = 1.5 from the origin – see Fig. 1 for an illustration. The obstacle is located inside X1 and is

bounded by C1. In X2, no physical obstacle is present. The sound-soft boundary condition requires that the

total field be zero on C1, while the Jacobi-Anger expansion (see for example [19, p. 67]) yields the exact
3 2 1 0 1 2 3
3

2

1

0

1

2

3
finite differences, multiDt-N

3 2 1 0 1 2 3
3

2

1

0

1

2

3
finite elements, singleDt-N

Fig. 4. Scattering from two ellipses, k = 2p, a = 3p/8. Contour lines of the real parts of the total wave fields for two solutions are

shown. Left: the numerical solution obtained by a second-order finite difference method combined with the multiple-DtN condition;

Right: the numerical solution obtained by a (piecewise linear) finite element method combined with the single-DtN condition.
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solution for the scattered field everywhere outside C1. Then we prescribe its values on the boundary of a

second virtual obstacle, centered at (0,d) with radius 0.75, and compute the numerical solution in the

two (disjoint) computational domains X1,X2, bounded by circles B1 and B2 with radii R1 = 1 and

R2 = 1.25, respectively. We then compare the numerical result with the exact solution for single scattering.
0 1 2 3 4 5 6
–10

–5

0

5

10

15

20
scattering cross section

finite elements, singleDt-N
finite differences, multiDt-N

Fig. 6. Comparison of multiple-DtN with single-DtN. Values of the scattering cross-section (102) for both numerical solutions.
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We choose k = 2p for the wave number and truncate the DtN expansion at N = 50. We also compute the

exact far-field pattern and compare it with that given by our numerical result. The maximal relative errors

for different grids and incidence angles are shown in Table 1.

We observe second order convergence of our method in every case, as expected, as the mesh size h!0.

To study the effect of the truncation parameter N on the error we choose a = p/4 for the incidence angle
and compute the solution with varying N, either with the DtN and MDtN condition imposed at B. The

relative error is shown in Fig. 3.

We observe that the modified DtN condition leads to better accuracy, even for small truncation indices

N. When N P max{kR1,kR2}, the two solutions computed with DtN and MDtN essentially coincide for

this model problem. This behavior of the DtN and MDtN conditions illustrated in Fig. 3 is typical, and has

been reported previously for single scattering problems [21,8].

6.2. Comparison with the single-DtN FE approach

Here, we consider the scattering of a plane wave with incidence angle a = 3p/8 on two obstacles with

sound-soft elliptic boundaries. The semi-major axes of the ellipses were chosen 0.75 and 0.5, whereas the

semi-minor axes are 0.375 and 0.25, respectively. The numerical solution obtained by using our finite dif-

ference scheme with the multiple-DtN condition on the artificial boundaries is compared with a numerical

solution obtained by using a finite element scheme in a larger domain, which contains both obstacles, with
–3 –2 –1 0 1 2 3
–3

–2

–1

0

1

2

3
total field, real part

Fig. 7. The total field for plane wave scattering from five cylinders, k = 8p, incidence angle a = p/8.
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the single-DtN condition imposed at the artificial boundary r = 3. The wave number is k = 2p and the res-

olutions are comparable, with about 45 grid points per wavelength. Here the modified DtN map is used and

the truncation index is set to N = 50. The contour lines of the real part of the total field are shown for both

solutions in Fig. 4. Note that the size of the computational sub-domains in the multiple-DtN case is inde-

pendent of the relative distance between them, leading to a much smaller computational domain, in com-
parison with the single-DtN case.

In Fig. 5, the values of the two solutions on the artificial boundary at r = 3, which was used for the finite

element solution, are shown. The multiple-DtN solution is evaluated on that boundary by using the Fourier

representation (84) for the purely outgoing wave fields.

For a given far-field pattern f, the scattering cross-section r̂ is defined as
r̂ðhÞ ¼ 20 log10jf ðhÞj; h 2 ½0; 2pÞ: ð102Þ

In Fig. 6, the scattering cross-section for plane wave scattering from two ellipses, obtained by using (88), is

displayed for the single-DtN and multiple-DtN solutions. The two cross-sections coincide.

6.3. An example with five obstacles

An important advantage of our multiple-DtN approach is that no further analytical derivation is needed

to extend it to higher numbers of scatterers, once the DtN condition is known for two domains. Here we

consider the scattering of a plane wave with incidence angle a = p/8 impinging on five cylindrical obstacles
of different sizes with sound-soft boundaries. The wave number is set to k = 8p and the grid consists of
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Fig. 8. The scattering cross-section (102), obtained by using (88), for the five cylinders, k = 8p, incidence angle a = p/8.
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about 20 points per wavelength. We use the modified DtN map and truncate the infinite series at N = 50.

The real part of the total field and the scattering cross-section (102) are shown in Figs. 7 and 8.
7. Conclusion

We have derived a Dirichlet-to-Neumann (DtN) map for multiple scattering problems, which is based on

a decomposition of the scattered field into several purely outgoing wave fields. We have proved that the

corresponding DtN boundary condition is exact. When the multiple-DtN boundary condition is used to

solve multiple scattering problems, the size of the computational domain is much smaller, in comparison

to the use of one single large artificial boundary. In particular, the size of the computational sub-domains

in the multiple-DtN case does not depend on the relative distances between the components of the scatterer.

Although the artificial boundaries must be of simple geometric shape, here a circle, the DtN condition is not
tied to any coordinate system inside the computational domain; in particular, it remains exact independ-

ently of the discretization used inside X.
We have presented a variational formulation of a multiple scattering problem with this boundary con-

dition and also derived a formula for the far-field of the solution, which is obtained by exploiting auxiliary

values used in the formulation. Accuracy and convergence have been demonstrated on a simple test prob-

lem, and a comparison with single-DtN has been made in the situation of two elliptical obstacles.

This approach is based on the decomposition of the scattered field into several purely outgoing wave

fields. It can also be used to derive exact non-reflecting boundary conditions for multiple scattering prob-
lems for other equations and geometries, such as ellipses, spheres, or even wave guides, both in two and in

three space dimensions, for which the DtN map with a single artificial boundary is explicitly known.

For large-scale applications in multiple scattering, it may be useful, or even necessary, to solve the se-

quence of sub-problems in X1, X2, etc. iteratively, while exchanging boundary values between the disjoint

exterior boundary components via the operators M, P, and T. Parallelism can be increased even further by

using standard domain decomposition techniques [27,28] separately within each sub-domain Xj. Although

the convergence of such a Jacobi or Gauss–Seidel like iterative procedure remains an open question, it

could certainly be used as an efficient preconditioner.
In this work we have only treated the time-harmonic case. In the time-dependent case, a similar ap-

proach can be used to derive exact non-reflecting boundary conditions for multiple scattering problems,

by using a representation formula derived in [29]. The authors are currently investigating the time-depend-

ent case and will report on their results elsewhere in the near future.
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